Publicaciones SCI


Inicio » Producción Científica » Publicaciones SCI

Publicaciones SCI

  1. Manufacture of healthy snack bars supplemented with Moringa sprout powder. Coello K.E., Frías J., Martínez-Villaluenga C., Cartea M.E., Velasco P. and Peñas E. Food Science and Technology, 154: 112828 (2022).https://www.sciencedirect.com/science/article/pii/S0023643821019812
  2. Differences in nutrient composition of sea fennel (Crithmum maritimum) grown in different habitats and optimally controlled growing conditions. Martins-Noguerol R., Matías L., Pérez-Ramos I.M., Moreira X., Muñoz-Vallés S., Mancilla-Leytón J.M., Francisco M., García-González A., De Andrés-Gil C., Martínez-Force E., Millán-Linares M.C., Pedroche J., Figueroa M.E., Moreno-Pérez A.J. and Cambrollé. J. Journal of Food Composition and Analysis, 106, 104266 (2022).https://www.sciencedirect.com/science/article/pii/S088915752100466X
  3. Crithmum maritimum seeds, a potential source for high-quality oil and phenolic compounds in soils with no agronomical relevance. Martins-Noguerol R., Pérez-Ramos I.M., Matías L., Moreira X., Francisco M., García-González A., Troncoso-Ponce A.M., Thomasset B., Martínez-Force E., Moreno-Pérez A.J. and Cambrollé J. Journal of Food Composition and Analysis, 108, 104413 (2022).https://www.sciencedirect.com/science/article/pii/S088915752200031X
  4. Plant responses underlying timely specialized metabolites induction of Brassica crops. Doghri M., Rodríguez V.M., Kliebenstein D.J. and Francisco M. Frontiers in Plant Sciences 12:807710 (2022).https://www.frontiersin.org/articles/10.3389/fpls.2021.807710/full
  5. Changes in Brassica oleracea leaves infected with Xanthomonas campestris pv. campestris by proteomics analysis. Tortosa M., Velasco P., Rodríguez V.M. and Cartea M.E. Frontiers Plant Science. 12:781984 (2022).https://www.frontiersin.org/articles/10.3389/fpls.2021.781984/full
  6. Glucosinolates as an effective tool in plant-parasitic nematodes control: Exploiting natural plant defenses. Eugui D., Escobar E., Velasco P. and Poveda J. Applied Soil Ecology, 176: 104497 (2022).https://www.sciencedirect.com/science/article/pii/S0929139322001135
  7. Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. Poveda J., Díaz-Gonzalez S., Diaz-Urbano M., Velasco P. and Sacristan S. Frontiers in Plant Science, Doi 10.3389/fpls.2022.932288 (2022).https://www.frontiersin.org/articles/10.3389/fpls.2022.932288/full
  8. Endophytic fungi from kale (Brassica oleracea var. acephala) modify roots-glucosinolate profile and promote plant growth in cultivated Brassica species. First description of Pyrenophora gallaeciana. Rodríguez V.M., Diaz-Urbano M., Sklenar F., Zaati-Santamaría Z., Menéndez E. and Velasco P. Frontiers in Microbiology, Doi 10.3389/fmicb.2022.981507 (2022).https://internal-journal.frontiersin.org/articles/10.3389/fmicb.2022.981507/full
  9. The growth inmunity tradeoff in Brassica oleracea-Xanthomonas campestris pv. campestris pathosystem. Vega-Álvarez C., Francisco M., Cartea M.E., Fernández J.C., Soengas P. Plant Cell & Environment.https://doi.org/10.1111/pce.14454 (2022).https://onlinelibrary.wiley.com/doi/full/10.1111/pce.14454
  10. Climate affects neighbour-induced changes in leaf chemical defences and tree diversity–herbivory relationships. Poeydebat C., Jactel H., Moreira X., Koricheva J., Barsoum N., Bauhus J., Eisenhauer N., Ferlian O., Francisco M., Gottschall F., Gravel D., Mason, Muiruri E., Muys B., Nock C., Paquette A., Ponette Q., Scherer-Lorenzen M., Stokes V., Staab M., Verheyen K. and Castagneyrol B. Functional Ecology, 35: 67– 81 (2021).https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13700
  11. Maize Resistance to Stem Borers Can Be Modulated by Systemic Maize Responses to Long-Term Stem Tunneling. Rodriguez V.M., Velasco P., Cao A., Santiago R., Malvar R.A. and Butrón A. Frontiers in Plant Science, 11: 627468 (2021).https://www.frontiersin.org/articles/10.3389/fpls.2020.627468/full
  12. Apparent inhibition of induced plant volatiles by a fungal pathogen prevents airborne communication between potato plants. Granjer R.R., de la Fuente M., Fernandez-Conradi P., Soengas P., Turlings T.C.J., Vazquez-Gonzalez C., Abdala-Roberts L. and Rasmann S. Plant cell and environment. DOI:10.1111/pce.13961 (2021).https://onlinelibrary.wiley.com/doi/full/10.1111/pce.13961
  13. Effects of soil abiotic factors and plant chemical defences on seed predation on sea fennel (Crithmum maritimum). Pérez-Ramos I.M., Matías L., Francisco M., García-González A., Martins-Noguerol R., Vázquez-González C., Abdala-Roberts L. and Cambrollé J. Plant and Soilhttps://doi.org/10.1007/s11104-021-04994-x (2021).https://link.springer.com/article/10.1007/s11104-021-04994-x
  14. Sclerotinia sclerotiorum response to long exposure to glucosinolate hydrolysis products by transcriptomic approach. Madloo P., Lema M., Cartea M.E. and Soengas P. Microbiology Spectrum, e0018021 (2021).https://journals.asm.org/doi/full/10.1128/Spectrum.00180-21
  15. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Poveda J., Eugui D., Abril-Urías P. and Velasco P. Symbiosis, 85: 1-19 (2021).https://link.springer.com/article/10.1007/s13199-021-00789-x
  16. Transcriptomic reprograming of Xanthomonas campestris pv. campestris after treatment with hydrolytic products derived from glucosinolates. Madloo P., Lema M., Rodríguez V.M. and Soengas P. Plants-Basel, 10 (2021).https://www.mdpi.com/2223-7747/10/8/1656
  17. Glucosinolate induction and resistance to the cabbage moth, Mamestra brassicae, differs among kale genotypes with high and low content of sinigrin and glucobrassicin. Badenes-Pérez F.R. and Cartea M.E. Plants 10, 1951 (2021).https://pubmed.ncbi.nlm.nih.gov/34579483/
  18. Trichoderma hamatum Increases Productivity, Glucosinolate Content and Antioxidant Potential of Different Leafy Brassica Vegetables. Velasco P., Rodríguez V.M., Soengas P. and Poveda J. Plants, 10, 2441 (2021).https://www.mdpi.com/2223-7747/10/11/2449
  19. New vegetable Brassica Foods: a promising source of bioactive compounds. Soengas P., Velasco P., Fernández J.C. and Cartea M.E. Foods 10, 2911 (2021).https://www.mdpi.com/2304-8158/10/12/2911
  20. Agronomic and metabolomic side-effects of a divergent selection for indol-3-yl methyl GSL content in Kale (Brassica oleracea acephala). Poveda J, Velasco P, de Haro A, Johansen TJ, McAlvay AC, Moellers C, Mølmann JAB, Ordiales E and Rodríguez VM. Metabolites, 11: 384 (2021).https://pubmed.ncbi.nlm.nih.gov/34198476/
  21. Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes. McAlvay AC, Ragsdale AP, Mabry ME, Qi X, Bird KA, Velasco P, An H, Pires JC, Emshwiller E. Molecular Biology and Evolution (2021).https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msab108/6261082
  22. Pasta products enriched with moringa sprout powder as nutritive dense foods with bioactive potential. Coello KE, Peñas E, Martínez-Villaluenga C, Cartea ME, Velasco P, Frías J. Food Chemistry, 360: 130032 (2021).https://pubmed.ncbi.nlm.nih.gov/34022520/
  23. Importance of daily rhythms on Brassicaceae phytochemicals. Francisco M, Rodríguez VM. Agronomy, 11(4) : 639 (2021).https://digital.csic.es/bitstream/10261/236213/4/Importance_Francisco_PV_Art2021.pdf
  24. Black rot disease decreases young Brassica oleracea plants’ biomass but has no effect in adult plants. Vega-Alvarez C, Francisco M, Soengas P. Agronomy, 11(3) : 569 (2021).https://www.mdpi.com/2073-4395/11/3/569
  25. Fine mapping identifies NAD-ME1 as a candidate underlying a major locus controlling temporal variation in primary and specialized metabolism in Arabidopsis. Francisco M, Kliebenstein DJ, Rodríguez VM, Soengas P, Abilleira R, Cartea ME. Plant Journal. doi: 10.1111/tpj.15178 (2021).https://pubmed.ncbi.nlm.nih.gov/33523525/ 
  26. Evaluation of Italian and Spanish accessions of Brassica rapa: effect of flowering earliness on fresh yield and biological value. Cartea ME, Di Bella MC, Velasco P, Soengas P, Toscano S, Branca F. Agronomy, 11 : 29 (2021).https://digital.csic.es/bitstream/10261/225770/1/Evaluation_Cartea_PV_Art2021.pdf
  27. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Cámara-Martos F, Obregón-Cano S, Mesa-Plata O, Cartea-González ME, de Haro–Bailón, A. Food Chemistry, 339: 127860. DOI: 10.1016/j.foodchem.2020.127860 (2020).https://pubmed.ncbi.nlm.nih.gov/32866700/
  28. Potential of germination in selected conditions to improve the nutritional and bioactive properties of moringa (Moringa oleifera). Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Foods, 9 : 1639. doi:10.3390/foods9111639 (2020).https://www.mdpi.com/2304-8158/9/11/1639
  29. Development of transgenic Brassica crops against biotic stresses caused by pathogens and arthropod pests. Poveda, J, Francisco, M, Cartea, ME, Velasco P. Plants, 9: 1664. Doi: 10.3390/plants9121664 (2020).https://digital.csic.es/handle/10261/225655
  30. Use of plant-defense hormones against pathogen-diseases of postharvest fresh produce. Poveda, J. Physiological and Molecular Plant Pathology, 111 : 101521 (2020).https://www.researchgate.net/publication/342967949_Use_of_plant-defense_hormones_against_pathogen-diseases_of_postharvest_fresh_produce
  31. Marchantia polymorpha as a model plant in the evolutionary study of plant-microorganism interactions. Poveda, J. Current Plant Biology, 100152 (2020).https://pubag.nal.usda.gov/catalog/6916405
  32. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Thrichoderma, mycorrhizal and endophytic fungi. Poveda, J, Abril-Urías, P, Escobar, C. Frontiers in Microbiology, 11 (2020).https://www.frontiersin.org/articles/10.3389/fmicb.2020.00992/full
  33. Brassica oleracea acephala (kale) improvement by roots endophytic fungi: biological activity. Poveda, J, Zabalgogeazcoa I, Soengas P, Rodríguez VM, Cartea ME, Abilleira R, Velasco P. Scientific Reports, 10: 20224. Doi.org/10.1038/s41598-020-77215-7 (2020).https://digital.csic.es/handle/10261/224898
  34. Natural control of plant pathogens through glucosinolates: an effective strategy against fungi and oomycetes. Poveda, J, Eugui D, Velasco P. Phytochem Rev., 19: 1045-1059 (2020).https://link.springer.com/article/10.1007/s11101-020-09699-0
  35. Analysis of the acid detergent fiber content in turnip greens and turnip tops (Brassica rapa subsp. rapa) by means of near-infrared reflectance. Obregón-Cano S, Moreno-Rojas R, Jurado-Millán A, Cartea ME, De Haro-Bailón A. Foods, 8 : 364; doi: 10.3390/foods8090364 (2019).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770578/
  36. Glucosinolate-degradation products as co-adjuvant therapy on prostate cancer in vitro. Núñez-Iglesias, MJ, Novío S, García C, Pérez-Muñuzuri E, Soengas P, Cartea E, Velasco P and Freire-Garabal M. IJMS, 20: 4977. doi: 10.3390/ijms20204977 (2019).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834131/
  37. Role of major glucosinolates in the defense of kale against Sclerotinia sclerotiorum and Xanthomonas campestris campestris. Madloo P, Lema M, Francisco M, Soengas P. Phytopathology, 109:1246-1256 (2019).https://apsjournals.apsnet.org/doi/full/10.1094/PHYTO-09-18-0340-R
  38. Calcium-signaling proteins mediate the plant transcriptomic response during a well-established Xanthomonas campestris campestris infection. Tortosa M, Cartea ME, Velasco P, Soengas P, Rodriguez VM. Horticulture Research, 6: 103 (2019).ghttps://www.nature.com/articles/s41438-019-0186-7
  39. Seed oil quality of Brassica napus and Brassica rapa germplasm from northwestern Spain. Cartea ME, De Haro A, Padilla G, Obregón S, Del Río-Celestino M, Ordás A. Foods, 8 : 292. doi:10.3390/foods8080292 (2019).https://pubmed.ncbi.nlm.nih.gov/31357590/
  40. Dissecting quantitative resistance to Xanthomonas campestris campestris in leaves of Brassica oleracea by QTL analysis. Iglesias-Bernabé L, Madloo P, Rodríguez VM, Francisco M, Soengas P. Scientific Reports, 9(1) : 2015. DOI: 10.1038/s41598-019-38527-5 (2019).https://pubmed.ncbi.nlm.nih.gov/30765761/
  41. Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network. Díez MJ, De la Rosa L, Martín I, Guasch L, Cartea ME, Mallor C, Casals J, Simó J, Rivera A, Anastasio G, Prohens J, Soler S, Blanca J, Valcárcel JV, Casañas F. Frontiers Plant Science, 9: 1794 (2018).https://www.frontiersin.org/articles/10.3389/fpls.2018.01794/full
  42. Effects of 3-butenyl isothiocyanate on phenotypically different prostate cancer cells. Núñez-Iglesias MJ, Novio S, García G, Cartea ME, Soengas P, Velasco P, Freire-Garabal M. International Journal of Oncology, 53: 2213-2223 (2018).https://www.spandidos-publications.com/10.3892/ijo.2018.4545
  43. Brassica glucosinolate rhythmicity in response to light-dark entrainment cycles is cultivar-dependent. Soengas P, Cartea ME, Velasco P, Francisco M. Plant Science, 275: 28-35 (2018).https://pubmed.ncbi.nlm.nih.gov/30107879/
  44. Endogenous circadian rhythms in polyphenolic composition induce changes in antioxidant properties in Brassica Soengas P, Cartea ME, Velasco P, Francisco M. J. Agric. Food Chem., 66: 5984-5991 (2018).https://pubmed.ncbi.nlm.nih.gov/29851489/
  45. Effect of temperature stress on antioxidant defenses in Brassica oleracea. Soengas P, Rodríguez VM, Velasco P, Cartea ME. ACS Omega, 3: 5237-5243 (2018).https://pubs.acs.org/doi/10.1021/acsomega.8b00242
  46. Current challenges in plant eco-metabolomics. Peters K, Worrich A, Weinhold A, Alka O, Balcke G, Birkemeyer C, Bruelheide H, Calf OW, Dietz S, Dührkop K, Gaquerel E, Heinig U, Kücklich M, Macel M, Müller C, Poeschl Y, Pohnert G, Ristok C, Rodríguez VM, Ruttkies C, Schuman M, Schweiger R, Shahaf N, Steinbeck C, Tortosa M, Treutler H, Ueberschaar N, Velasco P, Weiß BM, Widdig A, Neumann S and van Dam NM. International Journal of Molecular Sciences, 19 : 1385. Doi:10.3390/ijms19051385 (2018).https://pubmed.ncbi.nlm.nih.gov/29734799/
  47. Unraveling the metabolomic response of Brassica oleracea exposed to Xanthomonas campestris pv campestris. Tortosa, M, Cartea ME, Rodríguez VM, Velasco P. Journal of the Science of Food and Agriculture, 98:3675-3683, DOI : 10.1002/jsfa.8876 (2018).https://pubmed.ncbi.nlm.nih.gov/29315593/
  48. Resistance to the cabbage root fly, Delia radicum (Diptera, Anthomyiidae), of turnip varieties (Brassica rapa rapa). Santolamazza S, Velasco P, Cartea ME. Euphytica, 213:274. DOI: 10.1107/s10681-017-2069-z (2017).https://www.researchgate.net/publication/321093810_Resistance_to_the_cabbage_root_fly_Delia_radicum_Diptera_Anthomyiidae_of_turnip_varieties_Brassica_rapa_subsp_rapa
  49. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field. Kerwin RE, Feusier J, Muok A, Lin C, Larson B, Coperland D, Corwin JA, Rubin MJ, Francisco M, Li B, Joseph B, Wining C, Kliebenstein D. New Phytologist, 215: 1249-1263 (2017).https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14646
  50. Characterization of a Spanish Brassica oleracea collection by using molecular and biochemical markers. Tortosa, M, Velasco P, Afonso D, Padilla G, Ríos D, Soengas P. Scientia Horticulturae, 219: 344-350 (2017).http://agri.ckcest.cn/ass/NK002-20170501002.pdf
  51. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea var. italica). Johansen TJ, Molmann JAB, Bengtsson GB, Schreiner M, Velasco P, Hykkerud AL, Cartea ME, Lea P, Skaret J, Seljasen R. Journal of the Science of Food and Agriculture, 10.1002/jsfa.8196 (2017).https://pubmed.ncbi.nlm.nih.gov/28026010/
  52. Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Francisco M, Tortosa M, Martínez-Ballesta MC, Velasco P, García-Viguera C, Moreno DA. Annals of Applied Biology, 170: 273-285. Doi:10.1111/aab.12318 (2017).https://onlinelibrary.wiley.com/doi/full/10.1111/aab.12318
  53. Modification of leaf glucosinolate contents in Brassica oleracea by divergent selection and effect on expression of genes controlling glucosinolate pathway. Sotelo T, Velasco P, Soengas P, Rodríguez VM, Cartea ME. Frontiers in Plant Sci. 7:1012. doi: 10.3389/fpls.2016.01012 (2016).https://www.frontiersin.org/articles/10.3389/fpls.2016.01012/full
  54. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense. Francisco M, Joseph B, Calligan H, Li B, Corwin J, Lin C, Kerwin R, Burow M, Kliebenstein DJ. Frontiers in Plant Sci., 7:1010. doi: 10.3389/fpls.2016.01010 (2016).https://www.frontiersin.org/articles/10.3389/fpls.2016.01010/full
  55. The defense metabolite, allyl glucosinolate, modulates Arabidopsis thaliana biomass dependent upon the endogenous glucosinolate pathway. Francisco M, Joseph B, Calligan H, Li B, Corwin J, Lin C, Kerwin R, Burow M, Kliebenstein DJ. Frontiers in Plant Sci.7:774. doi: 10.3389/fpls.2016.00774 (2016).https://digital.csic.es/handle/10261/169471
  56. Effects of Brassicaceae isothiocyanates on prostate cancer. Novío M, Cartea ME, Soengas P, Freire-Garabal M, Nuñez-Iglesias MJ. Molecules Frontiers 21, article number 626 (2016).https://pubmed.ncbi.nlm.nih.gov/27187332/
  57. Organ-specific quantitative genetics and candidate genes of phenylpropanoid metabolism in Brassica oleracea. Francisco M, Ali M, Ferreres F, Moreno DA, Velasco P, Soengas P. Frontiers in Plant Sci., e 6:1240. doi: 10.3389/fpls.2015.01240 (2016).https://pubmed.ncbi.nlm.nih.gov/26858727/
  58. Omics approach to identify factors involved in brassica disease resistance. Francisco M, Soengas P, Velasco P, Cartea ME, Rodríguez VM. Current Issues in Molecular Biology, 19: 31-42 (2016).https://pubmed.ncbi.nlm.nih.gov/26363709/
  59. Antibiotic properties of the glucosinolates of Brassica oleracea acephala similarly affect generalist and specialist larvae of two lepidopteran pests. Santolamazza-Carbone S, Sotelo T, Velasco P, Cartea ME. Journal of Pest Science, 89: 195-206. DOI: 10.1007/s10340-015-0658-y (2016).https://link.springer.com/content/pdf/10.1007/s10340-015-0658-y.pdf
  60. The glucosinolate biosynthetic gene AOP2 mediates feed-back regulation of jasmonic acid signaling in Arabidopsis. M Burow, S Atwell, M Francisco, R Kerwin, BA Halkier, DJ Kliebenstein. Molecular Plant 8, 1201-1212,DOI: org/10.1016/j.molp.2015.03.001 (2015).https://digital.csic.es/bitstream/10261/121461/1/Glucosinolate_Biosynthetic_Gene_AOP2.pdf
  61. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Kerwin R, Feusier J, Corwin J, Rubin M, Lin C, Muok A, Larson B, Li B, Joseph B, Francisco M, Copeland D, Weinig C, Kliebenstein DJ. eLife, 4, e05604 (2015).https://elifesciences.org/articles/05604
  62. Screening for resistance to black rot in a Spanish collection of Brassica rapa. Lema M, Cartea ME, Francisco M, Velasco P, Soengas P. Plant Breeding, 134: 551-556. doi:10.1111/pbr.12293 (2015).https://onlinelibrary.wiley.com/doi/full/10.1111/pbr.12293
  63. Effect of temperature stress on the early vegetative development of Brassica oleracea Rodríguez VM, Soengas P, Alonso-Villaverde V, Sotelo T, Cartea ME, Velasco P. BMC Plant Biology, 15: 145. DOI 10.1186/s12870-015-0535-0 (2015).https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-015-0535-0
  64. In vitro activity of glucosinolates and their degradation products against Brassica pathogenic bacteria and fungi. Sotelo T, Lema M, Soengas P, Cartea ME, Velasco P. Applied and Environmental Microbiology, 81: 432-440. DOI: 10.1128/AEM.03142-14 (2015).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272705/
  65. Identification of antioxidant capacity-related QTLs in Brassica oleracea. Sotelo, T, Cartea ME, Velasco P, Soengas P. Plos One, 9: e107290. Doi: 10.1371/journal.pone.0107290 (2014).https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107290
  66. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. Sotelo T, Soengas P, Velasco P, Rodríguez VM, Cartea ME. PlosOne, 9: e91428 (2014),doi:10.1371/journal.pone.0091428 (2014).https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091428
  67. Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax. Belkhadi A, De Haro A, Soengas P, Obregon S, Cartea ME, Chaib W, Djebali W. Journal of Plant Interactions, 9: 647-654, DOI:10.1080/17429145.2014.890751 (2014).https://digital.csic.es/bitstream/10261/101892/5/Belkadhi_Salicylic_agcid…pdf
  68. Determining the host-plant resistance mechanisms for Mamestra brassicae (Lepidoptera: Noctuidae) pest in cabbage. Cartea ME, Soengas P, Sotelo T, Abilleira R, Velasco P. Annals of Applied Biology, 164: 270-285. doi:10.1111/aab.12100 (2014).https://onlinelibrary.wiley.com/doi/10.1111/aab.12100
  69. Suitability of a European nuclear collection of Brassica oleracea landraces to grow at high temperatures. Rodríguez VM, Soengas P, Cartea ME, Sotelo T, Velasco P. Journal of Agronomy and Crop Science, 3: 183-190. DOI: 10.1111/jac.12048 (2014).https://onlinelibrary.wiley.com/doi/full/10.1111/jac.12048
  70. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea acephala. Santolamazza-Carbone S, Velasco P, Soengas P, Cartea ME. Oecologia, 174: 893-907. DOI 10.1007/s00442-013-2817-2 (2014).https://link.springer.com/article/10.1007/s00442-013-2817-2
  71. Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling. Goodspeed D, Liu JD, Chehab EW, Sheng Z, Francisco M, Kliebenstein DJ, Braam J. Current Biology, 23(13):1235-41. DOI:10.1016/j.cub.2013.05.034 (2013).https://pubmed.ncbi.nlm.nih.gov/23791724/
  72. Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium. Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Diebali W, Chajbi W. OMICS: A Journal of Integrative Biology, 1:398-406 (2013).https://digital.csic.es/handle/10261/91823
  73. In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris campestris. Velasco P, Lema M, Francisco M, Soengas P and Cartea ME. Molecules, 18: 11131-11143 (2013).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270452/
  74. Genetic regulation of cold-induced albinism in the maize inbred line A661. Rodriguez VM, Velasco P, Garrido JL, Revilla P, Ordás A, Butrón A. Journal of Experimental Botany, 64: 3657-3667; Doi: 10.1093/jxb/ert189 (2013).https://pubmed.ncbi.nlm.nih.gov/23881393/
  75. Intraspecific variation of host plant and locality influence the lepidopteran-parasitoid system of Brassica oleracea Santolamazza-Carbone S, Velasco P, Selfa J, Soengas P, Cartea ME. J Econ Entomol, 106: 1134-1144 (2013).https://digital.csic.es/handle/10261/96877
  76. Mating system of Brassica napus and its relationship with morphological and ecological parameters in Northwestern Spain. Soengas P, Velasco P, Vilar M, Cartea ME. Journal of Heredity,104: 491-499. Doi: 10.1093/jhered/est018 (2013).https://pubmed.ncbi.nlm.nih.gov/23530142/
  77. Glucosinolate variation in leaves of Brassica rapa Cartea ME, de Haro A, Soengas P, Obregon S, Velasco P. Plant Foods for Human Nutrition, 67: 283-288. DOI: 10.1007/s11130-012-0300-6 (2012).https://www.researchgate.net/publication/236839558_Glucosinolate_Variation_in_Leaves_of_Brassica_rapa_Crops
  78. Screening for resistance to black rot in oleracea crops. Lema M, Velasco P, Soengas P, Francisco M, Cartea ME. Plant Breeding, 131: 607-613. DOI:10.1111/j.1439-0523.2012.01974.x (2012).https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1439-0523.2012.01974.x
  79. Environmental and genetic effects on yield and secondary metabolite production in Brassica rapa Francisco M, Cartea ME, Butron A, Sotelo T, Velasco P. Journal of Agricultural and Food Chemistry, 60: 5507-5514. DOI 10.1021/jf301070q (2012).https://digital.csic.es/handle/10261/102748
  80. New insights into antioxidant activity of Brassica Soengas P, Cartea ME, Francisco M, Sotelo T, Velasco P. Food Chemistry, 134: 725-733 (2012).https://digital.csic.es/bitstream/10261/99743/1/Soengas_New_insights…pdf
  81. Discrimination of Xanthomonas campestris campestris races among strains from northwestern Spain by Brassica spp. genotypes and rep-PCR. Lema M, Cartea ME, Sotelo T, Velasco P, Soengas P. European Journal of Plant Pathology, 133: 159-169. DOI 10.1007/s10658-011-9929-5 (2012).https://digital.csic.es/handle/10261/99498
  82. Glucosinolates in the new oilseed crop meadowfoam: natural variation in section inflexae of limnanthes, a new glucosinolate in floccosa, and QTL analysis in L. alba. Velasco P, Slabaugh MB, Reed R, Kling J, Kishore VK, Stevens JF, Knapp SJ. Plant Breeding, 130: 352-359 (2011).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451031/
  83. Molecular evidence of outcrossing rate variability in Brassica napus. Soengas P, Padilla G, Velasco P, Francisco M, Cartea ME. Euphytica, 180: 301-306 (2011).https://digital.csic.es/handle/10261/46290
  84. Genotypic and environmental effects on agronomic and nutritional value of Brassica rapa. Francisco M, Velasco P, Lema M, Cartea ME. Agronomy Journal, 103: 735-742 (2011).https://digital.csic.es/handle/10261/102777
  85. Effect of genotype and environmental conditions on health-promoting compounds in Brassica rapa. Francisco M, Cartea ME, Soengas P, Velasco P. J. Agric. Food Chem., 59: 2421-2431 (2011).https://digital.csic.es/handle/10261/102759
  86. Genetic structure and diversity of a collection of Brassica rapa rapa L. revealed by simple sequence repeat markers. Soengas, P, Cartea ME, Francisco M, Velasco P. J. Agric. Sci., 149: 617-624. DOI: 10.1017/S0021859611000238 (2011).https://digital.csic.es/handle/10261/65546
  87. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Velasco P, Francisco M, Moreno DA, Ferreres F, García-Viguera C, Cartea ME. Phytochem. Anal., 22: 144-152. DOI: 10.1002/pca.1259 (2011).https://pubmed.ncbi.nlm.nih.gov/21259374/
  88. Phenolic compounds in Brassica Cartea ME, Francisco M, Soengas P, Velasco P. Molecules, 16: 251-280 (2011).https://pubmed.ncbi.nlm.nih.gov/21193847/
  89. Identification of sources of resistance to Xanthomonas campestris campestris in Brassica napus crops. Lema M, Soengas P, Velasco P, Francisco M, Cartea ME. Plant Dis., 95: 292-297 (2011).https://pubmed.ncbi.nlm.nih.gov/30743497/